Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomed Pharmacother ; 145: 112420, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1588219

ABSTRACT

Deciphering the molecular downstream consequences of severe acute respiratory syndrome coronavirus (SARS-CoV)- 2 infection is important for a greater understanding of the disease and treatment planning. Furthermore, greater understanding of the underlying mechanisms of diagnostic and therapeutic strategies can help in the development of vaccines and drugs against COVID-19. At present, the molecular mechanisms of SARS-CoV-2 in the host cells are not sufficiently comprehended. Some of the mechanisms are proposed considering the existing similarities between SARS-CoV-2 and the other members of the ß-CoVs, and others are explained based on studies advanced in the structure and function of SARS-CoV-2. In this review, we endeavored to map the possible mechanisms of the host response following SARS-CoV-2 infection and surveyed current research conducted by in vitro, in vivo and human observations, as well as existing suggestions. We addressed the specific signaling events that can cause cytokine storm and demonstrated three forms of cell death signaling following virus infection, including apoptosis, pyroptosis, and necroptosis. Given the elicited signaling pathways, we introduced possible pathway-based therapeutic targets; ADAM17 was especially highlighted as one of the most important elements of several signaling pathways involved in the immunopathogenesis of COVID-19. We also provided the possible drug candidates against these targets. Moreover, the cytokine-cytokine receptor interaction pathway was found as one of the important cross-talk pathways through a pathway-pathway interaction analysis for SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Host-Pathogen Interactions , Molecular Targeted Therapy/methods , SARS-CoV-2/physiology , Signal Transduction/drug effects , COVID-19/immunology , COVID-19/virology , Drug Discovery , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans
2.
Clin Case Rep ; 9(12): e05195, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1557777

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease. In this study, we report a 28-year-old pregnant woman who had a postpartum seizure with a background of HELLP syndrome and a proven COVID-19 infection. Her child survived, and at 12-week postpartum, all maternal COVID-19-related symptoms vanished, and she was cured.

3.
Gastroenterol Hepatol Bed Bench ; 13(4): 374-387, 2020.
Article in English | MEDLINE | ID: covidwho-1008404

ABSTRACT

AIM: The present study aimed to identify human protein-host protein interactions of SARS-CoV-2 infection in the small intestine to discern the potential mechanisms and gain insights into the associated biomarkers and treatment strategies. BACKGROUND: Deciphering the tissue and organ interactions of the SARS-CoV-2 infection can be important to discern the potential underlying mechanisms. In the present study, we investigated the human protein-host protein interactions in the small intestine. METHODS: Public databases and published works were used to collect data related to small intestine tissue and SARS-CoV-2 infection. We constructed a human protein-protein interaction (PPI) network and showed interactions of host proteins in the small intestine. Associated modules, biological processes, functional pathways, regulatory transcription factors, disease ontology categories, and possible drug candidates for therapeutic targets were identified. RESULTS: Thirteen primary protein neighbors were found for the SARS-CoV-2 receptor ACE2. ACE2 and its four partners were observed in a highly clustered module; moreover, 8 host proteins belonged to this module. The protein digestion and absorption as a significant pathway was highlighted with enriched genes of ACE2, MEP1A, MEP1B, DPP4, and XPNPEP2. The HNF4A, HNF1A, and HNF1B transcription factors were found to be regulating the expression of ACE2. A significant association with 12 diseases was deciphered and 116 drug-target interactions were identified. CONCLUSION: The protein-host protein interactome revealed the important elements and interactions for SARS-CoV-2 infection in the small intestine, which can be useful in clarifying the mechanisms of gastrointestinal symptoms and inflammation. The results suggest that antiviral targeting of these interactions may improve the condition of COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL